compound are made in a 96-well microtiter plate (Corning Costar 3695) using Solution 1. Following serial dilution each well has 50 μ l of Solution 1. The reaction is started by adding 50 μ l of solution 2 to each well. This may be done with a multichannel pipettor either manually or with automated liquid handling devices. The microtiter plate is then transferred to a microplate absorbance reader and multiple absorbance readings at 340 nm are taken for each well in a kinetic mode. The observed rate of change, which is proportional to the ATPase rate, is then plotted as a function of the compound concentration. For a standard IC₅₀ determination the data acquired is fit by the following four parameter equation using a nonlinear fitting program (e.g., Grafit 4):

$$y = \frac{\text{Range}}{1 + \left(\frac{x}{IC_{50}}\right)^s + \text{Background}}$$

where y is the observed rate and x is the compound concentration.

1-67. (canceled)

68. A method for the treatment of a cellular proliferative disease comprising administering to a subject in need thereof a pharmaceutical composition comprising a compound having the structure:

Formula I $\begin{array}{c|c}
R_1 & R_5 \\
R_2 & R_7 \\
R_{12} & R_{13} & R_{14} \\
\end{array}$

and pharmaceutically acceptable salts, solvates, chelates, non-covalent complexes, prodrugs, and mixtures thereof, wherein:

R₁ is chosen from optionally substituted aryl-C₁-C₄-alkyland optionally substituted heteroaryl-C₁-C₄-alkyl-;

R₂ and R₂, are independently chosen from hydrogen, optionally substituted alkyl-, optionally substituted alkoxy, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, and optionally substituted heteroaralkyl; or R₂ and R₂, taken together form an optionally substituted 3- to 7-membered ring;

 R_{12} is selected from the group consisting of optionally substituted imidazolyl, optionally substituted imidazolinyl, —NHR₄; —N(R₄)(COR₃); —N(R₄)(SO₂R_{3a}); and —N(R₄)(CH₂R_{3b});

R₃ is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, optionally substituted heteroaralkyl-, R₁₅O— and R₁₇—NH—;

 R_{3a} is chosen from optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, optionally substituted heteroaralkyl-, and R_{17} —NH—;

R_{3b} is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, and optionally substituted heteroaralkyl;

 R_4 is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted hetercyclyl-, and optionally substituted heteroaralkyl-;

R₅, R₆, R₇ and R₈ are independently chosen from hydrogen, acyl, optionally substituted alkyl-, optionally substituted alkoxy, halogen, hydroxyl, nitro, cyano, dialkylamino, alkylsulfonyl-, alkylsulfonamido-, alkylthio-, carboxyalkyl-, carboxamido-, aminocarbonyl-, optionally substituted aryl and optionally substituted heteroaryl; and

 R_{15} is chosen from optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, and optionally substituted heteroaralkyl-,

R₁₇ is hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, or optionally substituted heteroaralkyl-, including single stereoisomers, mixtures of stereoisomers.

69. A method according to claim 68, wherein if either R_2 or R_2 is hydrogen, then the other is not hydrogen.

70. A method according to claim 68 wherein R_5 , R_6 , R_7 and R_8 are each independently selected from hydrogen, amino, alkylamino, hydroxyl, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and cyano.

71. A method according to claim 70, wherein R_5 , R_6 , R_7 and R_8 are each independently selected from hydrogen, cyano, methoxy, and halogen.

72. A method according to claim 71, wherein R_5 , R_6 , and R_8 are each hydrogen and R_7 is cyano, methoxy or halogen.

73. A method according to claim 68 or 69, wherein R_2 is optionally substituted C_1 - C_4 alkyl and R_2 is hydrogen or optionally substituted C_1 - C_4 alkyl.

74. A method according to claim 73, wherein R_2 is hydrogen and R_2 is optionally substituted C_1 - C_4 alkyl.

75. A method according to claim 74, wherein R_2 is hydrogen and R_2 is ethyl or propyl.

76. A method according to claim 75, wherein R_2 is i-propyl.

77. A method according to claim 68, wherein R_1 is optionally substituted phenyl- C_1 - C_4 -alkyl- and optionally substituted naphthalenylmethyl.

78. A method according to claim 68, wherein R_1 is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl, dichlorobenzyl, dimethoxybenzyl, or naphthalenylmethyl.

79. A method according to claim 78, wherein R_1 is benzyl-, cyanobenzyl-, methoxybenzyl-, or naphthalenylmethyl.

80. A method according to claim 79, wherein R_1 is benzyl.

81. A method according to claim 68, wherein R_{12} is — $N(R_4)(COR_3)$ and R_3 is selected from optionally substituted alkyl-, optionally substituted aralkyl-, optionally sub-